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1 Introduction

The problems of temporal aggregation of time series models and the biases that result from utilizing

this type of procedure have been known since at least the 1960’s. Yet they have had relatively little

impact on the econometric literature and the approach adopted by applied economists attempting

to address questions of interest. Macroeconomists and policy makers, for example, often model

the dynamics of key macroeconomic variables at a quarterly frequency, without citing any reasons

governing that choice, a priori, aside from the availability of data. This is of course understand-

able, given the limited resources that can be allocated towards the collection of data by the various

institutions that do compile the data used by academics and policy makers alike. However, in

many circumstances, higher frequency data is available and simply modeling the data generating

processes of key macroeconomic and financial variables using lower frequency data, which have been

temporally aggregated, fails to address two important questions. The first is the appropriateness

of the chosen frequency in characterizing the ‘true’data generating process. The second is whether

a particular ‘natural’interval exists, whereby if one were to collect data at that interval, it would

approximate the natural frequency driving the particular process (see Brewer, 1973). Any progress

in attempting to answer these types of questions relies on understanding the implications of tem-

porally aggregating data. In particular, an essential ingredient is to understand how the degree

of temporal aggregation and sample size relates to the properties of a derived time series process,

as this then has implications for estimation and inference. Our contribution in this paper goes to

the heart of this issue, as we demonstrate exactly how the degree of temporal aggregation affects

the variance, covariance and autocorrelation of an aggregated time series, and we concommitantly

examine the implications for variance ratio tests and Sharpe ratios that have been used in the

macroeconomic and financial literatures.

One of the main contributions of temporal aggregation in the economics literature can be attributed
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to Holbrook Working (1960), who examined biases that arose as a result of time averaging data.

Working’s (1960) study focused on the impact of serial correlation in autoregressions containing

price differentials, where he demonstrated and derived analytical expressions for a bias that emerges

through temporal aggregation for the variance and covariance of a first differenced price series.

Subsequent research on the theoretical front has focused on deriving the implications of temporal

aggregation as they pertain to the appropriate way to characterize the data generating process for

an aggregated series.1 Even up until a decade ago, theoretical work on temporal aggregation has

derived the implications for a number of properties of an aggregated series, like persistence and

half-life (Taylor, 2001).

In most empirical studies, the econometrician knows relatively little about the properties of an

underlying data generating process, but uses available data to estimate and infer something about

those properties. The issue of temporal aggregation has been taken into account when analyzing

the persistence of macroeconomic series for policy analysis (Rossana and Seater, 1992, 1995; Paya

et al., 2007) or when testing specific models that otherwise would suggest rejections of theories such

as the Permanent Income Hypothesis (Haug, 1991, Christiano et al., 1991), or Purchasing Power

Parity (Choi et al., 2006; Paya and Peel, 2006, Ahmad and Craighead, 2011).2 A general conclusion

of the studies cited above is that temporal aggregation tends to induce additional persistence in

the series. However, as insightful as all these results are, the question of how temporal aggregation

affects a time series process for a specific level of aggregation and sample size still remains an open

one.

Consequently in this paper, we extend the line of research initiated by Working (1960) by examining

1For example, Amemiya and Wu (1972) show how temporal aggregation induces moving average terms in a purely
autoregressive model. Brewer (1973) computes the number of terms to which more general ARMA(p, q) processes
approach as the level of aggregation increases. Tiao (1972) complements these results by obtaining the limiting value
of such coeffi cients and shows that for any ARIMA(p, d, q) variable the limiting model is IMA(d, d). In fact, this
result coincides with Working’s for the particular case of the random walk where an ARIMA(0, 1, 0) aggregates to
an IMA(1, 1).

2A comprehensive survey of temporal aggregation can be found in Silvestrini and Veredas (2008).

2



the effects of two types of temporal aggregation: time averaging and interval sampling, in terms

of its implications for the properties of a random walk process. We focus on a random walk

given the importance of its implications for issues such as real business cycles (Nelson and Plosser,

1982), permanent income/life cycle hypothesis (Deaton, 1987), asset prices and market effi ciency

hypothesis (Fama, 1970). Although the frequency of the true data generating process is unknown,

we assume that it is high, and thus the natural interval is equal to or less than the actual interval of

observations used for any form of analysis. We undertake our analysis within the context of asset

prices that in theory should follow a martingale process and their returns a martingale difference.

We also consider the implications of temporal aggregation on the variance ratio test, which has

often been employed in both the macroeconomic and financial literatures. The variance ratio test,

which simply requires estimation of the variance of a time series (and its kth difference), has been

used as an alternative to unit root tests, by testing for uncorrelated increments in areas ranging

from exchange rates (Grilli and Kaminsky, 1991) to real output (Campbell and Mankiw, 1987). Yet

several studies have found contradictory results using the same data that differ only by the extent

of temporal aggregation, for example in testing the random walk hypothesis in the exchange rate

literature (Liu and He, 1991; Yilmaz, 2003).

Thus, we pursue our investigation of the aggregated data on four fronts and can summarize our

contribution as follows. First we utilize a notational framework that allows us to make a direct

comparison of the properties of the aggregated data with that of the disaggregated data. The

framework we use is most similar to the one used by Tiao (1972) who derives general expressions

for the impact of temporal aggregation in integrated time series models. In comparison to Tiao

(1972), the notation and resulting expressions which we derive are considerably simpler, although

we focus specifically on the random walk case. We are able to provide exact results that may be

used for inference when considering how the degree of temporal aggregation plays a role on the
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properties of the aggregated time series. More specifically, we use our framework to derive the

first and second moments of the aggregated series analytically and we are able to easily translate

and compare the properties of the aggregated and disaggregated series. In doing so, we are able

to determine whether a difference exists between the two, which is useful when attempting to

infer something about the populations moments of the true data generating process. We focus our

attention on the moments of the aggregated series rather than attempting to estimate parameters

of the data generating process, which has already received prior attention in the literature.3

Second, we seek to characterize the nature of the biases that emerge from temporal aggregation.

Although knowledge of the existence of the bias in the time averaging case is not something that

is new (see Working, 1960, and Taylor, 2001), we make a contribution to the extant literature by

demonstrating that these biases can arise as a result of the aggregation process itself, by linking the

degree of aggregation directly to the magnitude of the bias.4 In particular, one key insight that we

provide is to demonstrate that the total bias may be decomposed into two parts:- a small sample

bias, as well as a distortion that is introduced as a result of time averaging. In addition, we derive

exact expressions for the autocorrelation and autocovariance terms, for any order, both for levels

and general differences of the series. Consequently, we are able to infer how the degree of temporal

aggregation impacts these terms explicitly.

Third, we analytically derive the implications of temporal aggregation on the Variance Ratio in

the time averaging case and find that the variance of increments in the aggregated series is not

linear in the sampling interval. In doing so, we are able to generalize the result found by Working

(1960) in computing the variance (and covariances) of a differenced series, from first differences to

3See for example Zellner (1966) who suggests an iterative method for obtaining maximum likelihood estimates of
parameters; Telser (1967) also presents an estimating procedure for obtaining consistent estimates through the use
of the variance and autocorrelogram of the observed aggregated series. Sargan (1974) demonstrates the biases that
emerge in estimates going from a continuous time process to a discrete time approximation of that process.

4The only other work of which we are aware of that resembles the approach we take, aside from Working (1960),
is that of Campos, Ericsson and Hendry (1990), who utilize a similar approach to derive the implications of phase
averaging data.
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the qth difference. Moreover, since our framework allows for an explicit formulation of the degree

of temporal aggregation, our analysis provides the tools to be able to make direct comparisons of

the variance ratio across different levels of temporal aggregation, as well as computing the limits

of the variance ratio, both of which were not previously possible in the existing literature. We

demonstrate that our results have important repercussions for variance ratio tests that have been

used extensively in the asset pricing and other literatures and use a simple empirical example to

illustrate the effects.

Finally, we consider the impact of temporal aggregation on Sharpe ratios. In particular, we derive

an expression for the Sharpe ratio that accounts for the case where data has been time averaged,

and we briefly examine the implications. Here under the maintained assumption that the true data

generating process for returns is a random walk at the highest frequency, we are able to demonstrate

that the value of the Sharpe ratio increases with the degree of temporal aggregation. We are also

able to determine how the holding period for assets can also affect the value of the Sharpe ratio and

find that it is negative. However overall, we show that the temporal aggregation effect dominates.

The remainder of the paper is structured as follows. Section 2 highlights the nature of temporal

aggregation and derives expressions for covariances and correlations under the two different types

of aggregation that we consider. Section 3 focuses on the impact of temporal aggregation for the

variance ratio. Section 4 derives results for differenced series. Section 5 examines the implications

for the Sharpe ratio and the final section concludes.

2 Temporal Aggregation

There are two types of temporal aggregation that we investigate within this paper. The first is

that of time averaging where data is aggregated by averaging the values of a series within a non-

overlapping interval. The second type of temporal aggregation that we explore within this paper is
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that of interval sampling, where an aggregated dataset is created by sampling the data at a lower

frequency. We begin by outlining the two approaches and the bias that they generate in what

follows. The derivations of all the analytical results can be found in the technical appendix which

accompanies this paper and is available on the author’s websites. Consider a series yt that follows

a random walk, where increments are uncorrelated5

yt = yt−1 + εt, t = 1, 2, .....T (1)

where εt is white noise: E (εt) = 0;V ar (εt) = E
(
ε2
t

)
= σ2

ε; E (εtεs) = 0 ∀t 6= s and without any

loss of generality we assume the initial condition to be zero, y0 = 0. In this case, the mean of the

series, E (yt) = 0, and the kth covariance and autocorrelation are simply

Cov(yt, yt−k) = (t− k)σ2
ε; Cor (yt, yt−k) ≡ ρk =

√
t− k
t

. (2)

The variance of the series is simply obtained by setting k = 0 in the expression above and equals

tσ2
ε.
6

2.1 Temporal Aggregation through Time Averaging

Under time averaging, a lower frequency dataset is generated by computing the average value of the

data in non-overlapping intervening periods. For example, suppose that the original data generating

process is at a daily frequency and that we average every five periods to obtain a weekly one, i.e.

h = 5 as below.
5The addition of a drift term is straightforward and does not alter the main results obtained in the paper.
6For ease of exposition, we adopt this convention in the remainder of the paper, where the variance can simply

be computed by setting k = 0 (or k̃ = 0 in what follows in the subsequent sections) within the respective covariance
term.
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Let t̃ represent observations from the aggregated data, where t̃ = t
h , and k̃ represent lags of

the aggregated series, i.e. k̃ = k
h . This notation allows the computation of the results to be

expressed in either the ‘units of time’of the true data generating process (henceforth DGP) and

the corresponding aggregated process. An aggregated series y∗t (in terms of the original observations)

can be constructed as

y∗
t̃

=
1

h

(
yh(t̃−1)+1 + ...+ yht̃

)
=

1

h

h−1∑
i=0

yht̃−i.

The k̃th lag of the aggregated series can then be represented as y∗
t̃−k̃ = 1

h

∑h−1
i=0 yht̃−hk̃−i = 1

h

∑h−1
i=0 yh(t̃−k̃)−i.

When examining the properties of the aggregated series y∗
t̃
, where we set k̃ = 0, we can show that

the mean, E
(
y∗
t̃

)
= E [yht̃] = 0, and the k̃th covariance equals

Cov
(
y∗
t̃
, y∗
t̃−k̃

)
= σ2

ε

[
h
(
t̃− k̃

)
− (h− 1) +

(h− 1) (2h− 1)

6h

]
.

When h = 1, then the expressions for the variance and covariance above reduces to V ar
(
y∗
t̃

)
= tσ2

ε

and (t− k)σ2
ε - what we obtained before with no temporal aggregation. Similarly, the correlation

between y∗
t̃
and y∗

t̃−k̃ can thus be expressed as

Cor
(
y∗
t̃
, y∗
t̃−k̃

)
≡ ρ∗

k̃
=

Cov
(
y∗
t̃
, y∗
t̃−k̃

)
(
V ar

(
y∗
t̃

))0.5 (
V ar

(
y∗
t̃−k̃

))0.5 =

√√√√h
(
t̃− k̃

)
+D

ht̃+D
,

where D (h) ≡ (h−1)(2h−1)
6h − (h− 1) = − (h−1)

6h [1 + 4h] ≤ 0 since h ≥ 1. Since t = ht̃, note that

limt→∞ ρ∗k̃ = 1 and when h = 1, ρ∗
k̃

= ρk. Similarly, expressions for the variance and covariance
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above can be expressed in terms of the distortionary term, D (h) , as V ar
(
y∗
t̃

)
=
[
ht̃+D

]
σ2
ε

and Cov
(
y∗
t̃
, y∗
t̃−k̃

)
=
[
h
(
t̃− k̃

)
+D

]
σ2
ε respectively. When examining the total distortion in the

time averaging case, we note that ∂D
∂h = −

(
4h2+1

6h2

)
< 0 which would indicate that as the distance

between observations, h, increases, the magnitude of the distortion is increasing in absolute terms.

A final noteworthy point is that the presence of the distortion term above introduces a distinct

difference between an aggregated series and a disaggregated series. Given our framework, we can

examine the difference between the two, conditioning either on a specific time period, or on a

specific order of autocorrelation. For example, conditioning on a specific period of time, we are

able to compute the difference between the value for the correlation coeffi cient for the temporally

aggregated series less the corresponding (true) value for the disaggregated series as

bρA = ρ∗
k̃
− ρk =

√
t− k +D

t+D
−
√
t− k
t

, (3)

which is asymptotically zero as t → ∞. However, we could instead condition on the specific

order of autocorrelation, and the corresponding difference for the correlation coeffi cient between

the aggregated series and its disaggregated counterpart would then equal

bρA = ρ∗
k̃
− ρk̃ =

√
t− k +D

t+D
−
√
t− k/h

t
. (4)

For the covariance terms, a similar difference between an aggregated series and its disaggregated

counterpart, may be written as

bCA = Cov
(
y∗
t̃
, y∗
t̃−k̃

)
− Cov (yt, yt−k) =

[
h
(
t̃− k̃

)
+D

]
σ2
ε − (t− k)σ2

ε = Dσ2
ε (5)

when one conditions on a specific period of time. In the case where we condition on a specific

value of k̃, we would instead obtain bCA = Cov
(
y∗
t̃
, y∗
t̃−k̃

)
− Cov

(
yt, yt−k̃

)
= σ2

ε

[
D −

(
h−1
h

)
k
]
. In

examining the expressions above, we note that these differences equal to zero when h = 1, but will
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differ from zero in general when h > 1.

2.2 Temporal Aggregation through Interval Sampling

Under the alternative form of temporal aggregation, prices are obtained by taking every h-th

observation of the series. Suppose that a dataset is generated by sampling the process given in

equation (1) every h observations. This could occur when a lower frequency dataset is created from

a higher frequency one by using end of period observations or beginning of period observations.

For example, suppose that the original data generating process is at a daily frequency and that we

use beginning of period values every five periods to obtain a weekly series, i.e. h = 5 as above.

The k̃th lag of the aggregated series can be represented in terms of the original observations as

y∗
t̃−k̃ = yht̃−hk̃ = yh(t̃−k̃). As earlier under the case of time averaging, the mean of the aggregated

series E
(
y∗
t̃

)
= E (yht̃) = 0, whilst the k̃th covariance

Cov
(
y∗
t̃
, y∗
t̃−k̃

)
=
(
t̃− k̃

)
hσ2

ε, (6)

and whose k̃th autocorrelation is Cor
(
y∗
t̃
, y∗
t̃−k̃

)
≡ ρ∗

k̃
=

√
(t̃−k̃)
t̃
. Based on the true DGP, the

true variance, covariance and correlation are given in equation (2). When examining the difference

between the properties of an aggregated series to that of a disaggregated series, like that performed

earlier, we find that there is no difference for the correlation coeffi cient in the interval sampling

case, since bρI = ρ∗
k̃
− ρk =

√
(t−k)/h
t/h −

√
t−k
t = 0. Similarly, it is possible to see from comparing

equation (6) above to (2) that there will be no distortion in the variance or covariance terms and

these terms can be consistently estimated.
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However, when we once again condition on a specific value of k̃, we find that the aggregation process

yields a smaller sample than what was available for the higher frequency process, and this then

leads to a difference between the aggregated and disaggregated series. For the differences in the

correlation coeffi cient, this equals

bρI

(
h, k̃
)

= ρ∗
k̃
− ρk̃ =

√
(t− k)

t
−
√
t− k/h

t
6= 0. (7)

For the variance and covariance terms it equals

bCI = Cov
(
y∗
t̃
, y∗
t̃−k̃

)
− Cov (yt, yt−k) =

(
t̃− k̃

)
σ2
ε − (t− k)σ2

ε = −
(
h− 1

h

)
(t− k)σ2

ε. (8)

Two final points merit a mention. The first pertains to the issue of small sample biases that may

arise from the temporal aggregation process. The small sample bias is reflected in the term −
(
h−1
h

)
above and in the corresponding expression in the time averaging case. The emergence of this bias

is due to the loss of information arising from the aggregation process. The use of the term ‘small

sample bias’here differs to its customary usage, since it is related to h, the degree of aggregation,

rather than the conventional small sample bias that arises from a smaller value of t.

The second observation we make is that as the distance between observations, h, increases, the

magnitude of the difference between the aggregated and disaggregated series increases in absolute

terms, making the underlying process appear to be more stationary than it truly is. It is also

interesting to note that these small sample biases disappear asymptotically, or if h = 1. Hence, in

the case of interval sampling, any bias that we might observe would arise due to a small sample

problem, since when we condition on k̃, any difference that remain relates to the the loss of infor-

mation resulting from temporal aggregation. However, as we find when we condition on a specific

period of time, parameter estimates will still be consistent when estimating equation (1).7

7The intuition behind why parameter estimates will be consistent is as follows. The only difference between the
original data generated from equation (1) and the data obtained as a result of temporal aggregation, when the form
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2.3 Decomposition of the Distortion

In examining the two types of temporal aggregation, we can see by comparing equations (8) and

(5), that for k > 0 and h ≥ 1, that the absolute value of the differences between the aggregated

series and the disaggregated one should be larger under time averaging relative to the interval

sampling. It is also possible to show this by examining the difference in the correlation coeffi cient.

Doing this comparision allows us to think of the difference in these properties in terms of a pure

“small sample”bias arising from the loss of observations, as in the interval sampling case, as well

as a distortionary component that is introduced in the time averaging case. Notice that equation

(3) - (5) contain the term D, which can be decomposed into a “small sample” bias as well as a

distortionary component. If we define the loss of information arising from the aggregation process

as Bs ≡ − (h−1)
h , which was observed in the interval sampling case for the variance and co-variance,

then we can express D (h) in terms of a small sample component and a distortionary component

as follows

D = Bs (1 + 4h)

6
= BsBd. (9)

Thus Bd ≡ 1
6 (1 + 4h) represents the distortionary part arising as a result of time averaging. Thus

for h > 1, the total distortion in the time averaging case will be larger in absolute value than what

appears in the interval sampling case since Bd > 1.

3 Variance Ratio Test

In this section we examine the effect that time averaging has on both the variance of increments of

the aggregated process and the calculation of the Variance Ratio. The true DGP we are considering

exhibits uncorrelated increments ∆yt = εt, where ∆ is the first difference operator, and V ar(∆yt) =

of aggregation is interval sampling, is merely the number of data points available to estimate the coeffi cients. As
such, the smaller (aggregated) data will still yield consistent estimates, although it may have larger standard errors.
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σ2
ε.
8 The k−difference of yt, ∆kyt =

k−1∑
i=0

εt−i, and therefore V ar(∆kyt) = kσ2
ε. The ratio of the

variance of a k−period interval of a random walk to k times the variance of a one-period interval,

the Variance Ratio, V R(k) = V ar(∆kyt)
kV ar(∆yt)

, should be one, or statistically indistinguishable from one.9

This property has been used to derive single-tests of unity for the Variance Ratio for individual

values of k, consistent under both homoskedasticity and heteroskedasticity (see Lo and MacKinlay,

1988) as well as multiple Variance-Ratio tests (see Chow and Denning, 1993).

Monte Carlo experiments show that these test statistics are more powerful than alternative unit

root tests such as DF, PP or Box-Pierce when testing for random walks (see Lo and MacKinlay,

1989; Liu and He, 1991; and Chow and Denning, 1993). As such, variance ratios have been applied

to test the null hypothesis of a random walk for returns on equity, exchange rates and interest rates

in developed as well as emerging markets (see e.g. Liu and He, 1991; Fong, Koh, and Ouliaris,

1997; Yilmaz, 2003; Belaire-Franch and Opong, 2005).10 Many of these studies suggest a rejection

of the martingale property of financial returns, and sometimes indicate predictability with respect

to their own past. However, studies using similar data at different frequencies find contradictory

results (which we highlight a little later).

To illustrate the effect of temporal aggregation, we compute the variance of the k̃−difference

V ar(∆k̃y
∗
t̃
) =

(
hk̃ + 2D + (h− 1)

)
σ2
ε (10)

Note that for k̃ = 1, h = 1 we obtain the result for the original series, V ar(∆y∗
t̃
) = V ar(∆yt) = σ2

ε.

Our result allows for an easy computation of the variance of the k−difference of the series and can

nest the result in Working (1960) for the first difference of the series, or returns of the aggregated

8One can think of yt as log prices (logPt) and therefore ∆yt as the return series.
9The Variance Ratio will still approach one asymptotically even in the case of dependent but uncorrelated incre-

ments. This holds because the variance of the sum of uncorrelated increments equals the sum of the variances.
10Variance ratios have also been used to measure the persistence of real output (see e.g. Campbell and Mankiw,

1987; Cochrane, 1988; Cecchetti and Lam, 1994).
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series. In particular, for k̃ = 1, V ar(∆y∗
t̃
) =

(
1 + (2h−1)(h−1)

3h

)
σ2
ε = 2h2+1

3h σ2
ε. We also generalize

our result by obtaining a general expression of the Variance Ratio for the aggregated series for any

value of k̃ and h :

V R(k̃) =
V ar(∆k̃y

∗
t̃
)

k̃V ar(∆y∗
t̃
)

=
hk̃ + 2D + (h− 1)

k̃ (2D + (2h− 1))
. (11)

The Variance Ratio is therefore non-constant, since it is a function of h and k̃. By examining

equation (11) above, we can determine how the Variance Ratio changes as either k̃ changes or

as h, the degree of temporal aggregation changes. For example, for a given value of k̃, we can

compute the asymptotic behavior with respect to h. This yields limh→∞ V R
(
k̃
)

= 3
2

[
1− 1

3k̃

]
.

From this expression, we see a random walk process is bounded by 1, and it has an asymptote at

1.5 as the level of aggregation h and k̃ grow without bound (see Figure 1).11 A similar pattern

for the impulse response function (irf) emerges given its close relationship with the variance ratio.

Campbell and Mankiw (1989) derive a lower bound on the value of irf or the infinite sum of the

moving average coeffi cients as irf =
√

v
var(εt)/var(∆yt)

=
√
v (for a random walk process), where

v = lim
k̃→∞ V R(k̃) = h

1
3h

(2h−1)(h−1)+1
. The value of irf has a lower bound at 1.225 as h grows

indefinitely.12

The results above imply that the Variance Ratio test typically used, would be invalid if the frequency

of the data does not match the one of the true DGP. For example, assuming that the ‘true’higher

frequency process follows a random walk, the Variance Ratio in (11) applied to a lower frequency

dataset would be biased upwards, which would increase the type I error of the test. This can easily

be seen from the following example. Suppose that we were to assume that log prices, yt, followed

11The asymptotic value of 1.5 for the Variance Ratio and of 1.26 for the impulse response function was previously
mentioned in Rossana and Seater (1995). However, they did not link the degree of aggregation, h, to the bounds
imposed on the Variance Ratio. Our expression allows us to show how the Variance Ratio will behave for any kth

difference as well as when the degree of aggregation, h, varies.
12An alternative but equivalent way of computing the irf is one plus the sum of the autocorrelation coeffi cients,

which for the case of k̃ = 1 is equal to 1 + h2−1
4h2+2

, and for h→∞ is equal to 1.25.
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a random walk at the daily frequency and therefore returns (∆yt) were white noise. The use of

weekly data (h = 5) would generate the following values for the variance ratio at lags k̃ = 2, 4, 8,

and 16 : V R(2) = 1.23, V R(4) = 1.35, V R(8) = 1.41, V R(16) = 1.44. Liu and He (1991, table II, pp.

777) find the following average values when computing variance ratio tests for the dollar exchange

rates vis a vis the Deutschmark, the Yen and the Pound Sterling, where the null of a random

walk was rejected using weekly data: V R(2) = 1.04, V R(4) = 1.13, V R(8) = 1.23, V R(16) = 1.34.

Interestingly enough, Yilmaz (2003, table 4) using daily frequency data for the same set of currencies

found variance ratio tests that were much lower and closer to one, though all greater than one,

than the ones in Liu and He (1991).

We complement those results in the literature for the dollar/sterling exchange rate by, first, updating

the data, and secondly, by using both time average and sampling aggregated data. The beginning

of the sample is the same as in Liu and He, that is, August 7, 1974, and extending it until May

13, 2011. We use daily data available from the FRED database as the highest frequency, as well

as their time averaged and interval sampled data, available at the weekly and monthly frequency.

The results in Table 1 Panel A show that variance ratios for the time average aggregated data are

always significant, larger than one and larger than the V R of the daily series. For the interval

sampling case this result does not hold.13

Our result has consequences, not only for the rejection or not of the random walk hypothesis, but

also for the interpretation of the Variance Ratio. We can note from equation (11) that V ar(∆k̃y
∗
t̃
)

does not grow linearly with k̃h. Values of the Variance Ratio above one suggest positive serial

correlation given that the V R(k̃) can be interpreted as the weighted sum of the first k̃ − 1 au-

tocorrelation coeffi cients. For example in the case of exchange rate returns, the bias induced by

temporal aggregation will favour the undershooting phenomenon (positive autocorrelation) relative

13We have run Monte Carlo experiments where these results are ratified using random walks as DGP and different
levels and methods of aggregation. Results are not reported for space consideration but available upon request.
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to the overshooting theory (negative autocorrelation) (see Liu and He, 1991; and Huizinga, 1987).

4 Autocorrelations of Differenced Series

We now focus our attention on the covariance and autocorrelations of a k̃−differenced sequence.

In order to do so, we need to introduce a new parameter q̃, which represents the autocovariance

order for the k̃−differenced aggregated series. In comparing the results that follow here to those

of Working (1960), we note that the results derived in Working (1960) are for the case of the

first-order autocovariance (q̃ = 1) for the first-differenced (k̃ = 1) aggregated series. In terms of

our notation, this would amount to setting the values k̃ = 1, q̃ = 1 within the autocovariance term

Cov(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) i.e. Cov(∆y∗

t̃
,∆y∗

t̃−1
). Given that ∆

k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃ are only sums of white noise

processes, the expression for the covariance is derived from the product of ∆
k̃
y∗
t̃
and ∆

k̃
y∗
t̃−q̃, which

will have values different from zero as long as the following condition is met: h(1 + k̃− q̃) ≥ 2. This

condition holds when k̃ ≥ q̃ given that h > 1. The covariance has two expressions depending on

the values of k̃ and q̃ :

Cov(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =


1
h2

[
h−1∑
i=1

i(h− i)σ2
ε

]
= (h2−1)

6h σ2
ε if q̃ = k̃

h(k̃ − q̃)σ2
ε if k̃ > q̃

. (12)

When comparing the expression above to those that Working (1960) derived, we note that our

expression is more general and nests the one obtained by Working who examined the case where

q̃ = k̃ = 1. In his particular case, the autocovariance terms are zero, ∀q̃ ≥ 2. However, for the case

that k̃ > q̃, no distortion exists in the expression for the covariance.14

However, the correlation coeffi cient will include a distortion that arises from the variance term.

For the case of k̃ = 1 (and therefore q̃ = 1, which is the specific case that Working examined), we

14This is because in the true DGP, the qth order autocovariance term Cov(∆kyt,∆kyt−q) = (k − q)σ2ε, where we
use the notational transformation to aggregated data (k − q) = h(k̃ − q̃).
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derive the following expression for autocorrelation:

Cor(∆y∗
t̃
,∆y∗

t̃−1
) =

Cov
(

∆y∗
t̃
,∆y∗

t̃−1

)
(
V ar

(
∆y∗

t̃

))0.5 (
V ar

(
∆y∗

t̃−1

))0.5 =
h2−1

6h
2h2+1

3h

=
h2 − 1

4h2 + 2
. (13)

When k̃ > 1 we once again have to consider two scenarios. In the first scenario, we consider the

case where k̃ = q̃, and we obtain:

Cor(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =

Cov
(

∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃

)
(
V ar

(
∆
k̃
y∗
t̃

))0.5 (
V ar

(
∆
k̃
y∗
t̃−q̃

))0.5

=
h2−1

6h

h(k̃ − 1) + 1 + (2h−1)(h−1)
3h

=
h2−1

6h

hk̃ + 2D + (h− 1)
if q̃ = k̃. (14)

Given that q̃ = k̃, and considering any values of
{
k̃, q̃
}
for a given amount of temporal aggregation

h, the distortion in the autocorrelation coeffi cient differs from Working’s due to the distortion in

the variance as can be seen by the terms in the denominator. Although this term is positive, it is

worth noting that the distortion D is purely a function of the degree of temporal aggregation, h,

i.e. D (h) . Consequently, we can see that the effect of the distortion term in the autocorrelation

coeffi cient gets smaller as we increase k̃, and in the limit as k̃ → ∞, the term hk̃ dominates the

denominator (see Figure 2).

In the second scenario, we examine the case where k̃ > q̃, and obtain the following for the autocor-

relation expression:

Cor(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =

h(k̃ − q̃)
hk̃ − (h− 1) + (2h−1)(h−1)

3h

if k̃ > q̃. (15)

The distortion in this correlation coeffi cient once again arises due to the distortion in the variance

of the aggregated series given that Cor(∆kyt,∆kyt−q) = k−q
k = h(k̃−q̃)

hk̃
in the true DGP. For both

equations (14) and (15), it is easy to note that the distortion arises from the second and third
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terms in the denominator −(h − 1) + (2h−1)(h−1)
3h = 2D + (h − 1). This term is negative although

smaller than hk̃ in absolute value, making the correlation appear larger than it should be. This

implies that, as the level of temporal aggregation (h) increases, the distortion in the autocorrelation

coeffi cient increases, which is consistent with the previous results.

Panel B in Table 1 displays the autocorrelation coeffi cient for the currency return series (Cor(∆y∗
t̃
,∆y∗

t̃−q̃))

using both types of aggregation. It is worth noting that the autocorrelation increases with the level

of aggregation for the time averaging case but not for the interval sampling one. These results are

reflected in the autocorrelation values of order q for the k−differenced exchange rate series reported

in Table 2. The values of the daily exchange rate very closely resemble those of a theoretical random

walk. In addition, it is interesting to note that the autocorrelations for the interval sampling case

do not vary with the level of aggregation. For the time averaging case, the values of the autocorre-

lation coeffi cient are higher than the theoretical values and this appears to be consistent with our

results above.

Filtering the Effects of Temporal Aggregation

The analytical expressions reported in (12)-(15) and the results reported in Table 2 reveal the

two different effects of time averaging. First, the autocorrelation coeffi cients induced by the MA

terms created by overlapping ‘return’series are higher than those predicted theoretically. Second,

temporal aggregation induces additional moving average terms and this results in higher order

autocorrelation. For instance, in Table 2, in the case of ‘weekly’aggregation (h = 5), the first and

second order autocorrelation coeffi cients of two period ‘returns’(k = 2, q = 1 and q = 2) are 0.591

and 0.109 (0.595, 0.095 if we use expressions (14) and (15)), respectively, which differ from the

theoretical values of a random walk of 0.5 and 0, respectively.

In principle, if the researcher knew the true frequency of the DGP, the results obtained in the

previous section could be used to filter the aggregated series and retrieve the properties of the
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original series. In the example above, the second-differenced series has in theory an MA(1) process

with first order autocorrelation of 0.5, which implies an MA term with coeffi cient equal to 1, i.e.

∆2yt = (1 +L)εt. However, the aggregated series turns out to be an MA(2) with coeffi cients θ1 and

θ2, ∆2̃y
∗
t̃

= (1+θ1L+θ2L
2)εt. Given that we know the value of the two autocorrelation coeffi cients

based on equations (14) - (15) are (0.595, 0.095), we could use the expression of the autocorrelation

function of an MA(q) process15 to obtain the values of θ1 and θ2. These values would then be used

to apply the filter (a Taylor expansion of) 1+L
1+θ1L+θ2L2

to the series ∆2̃y
∗
t̃
. In general, this procedure

applies generally for any value of h, q, and k,and allows a researcher who has some prior about the

natural frequency of the DGP to infer something about about its true properties.

5 Sharpe Ratio

Sharpe ratios play an important role in finance in assessing whether investments are safer in the

long run compared to the short run (see Siegel, 1988, Lettau and Ludvigson, 2010). If the standard

deviation of returns grows more quickly than its mean, the Sharpe ratio grows slower than the

square root of the horizon. From this, it may appear reasonable to conclude that stocks are safer

in the short run than they are in the long run, given the mean-variance tradeoff. However, we

illustrate below how the temporal aggregation results obtained above may affect the analysis and

interpretation of the Sharpe ratio. Moreover, we use this example to illustrate how aggregation has

an effect on both the ‘absolute’value of variances within a given frequency and the ‘relative’value

across frequencies.

We begin by maintaining the assumption that, at the highest frequency, the DGP is a random walk

with iid errors but now we assume that the process also include a drift term, µ :

15The ACF of an MA(q) process can be written as ρ(s) =

q−s∑
j=0

θjθj+s

/
q∑

j=0

θ2j with θ0 = 1.
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∆yt = µ+ εt, t = 1, 2, .....T (16)

where E(∆yt) = µ, V ar (εt) = E
(
ε2
t

)
= σ2

ε. In order to compare the Sharpe ratio at different

horizons, Sk, we need to utilize expressions for the mean and variance of a k-differenced series,

i.e. E (∆kyt) = kµ, and V ar (∆kyt) = kσ2
ε. For illustrative purposes let us assume that yt follows

process (16) at the ‘daily’ frequency and supposed that we wish to compare an investment at

horizons 1, 3, 5 and 10 years (k = 240, 720, 1200, 2400). In this case, as pointed out by Lo (2002),

the Sharpe ratio divided by the square root of the horizon is constant for all k :

ζ ≡ Sk√
k

=
kµ√
kσ2

ε

√
k

=
µ

σε
(17)

From this, one may conclude that if yt is a random walk with drift, then investments at different

horizons are ‘equally safe’. However, this conclusion changes when we use aggregated data, and two

artifacts of aggregation are worth mentioning. First, the numerator above in (17) grows linearly

with k = k̃h. For example, if the level of aggregation h is annual (h = 240), then the expected

value of ∆y∗t at the k̃
th horizon ahead (e.g. k̃ = 1, 3, 5) will be E

(
∆
k̃
y∗t
)

= k̃hµ = kµ, which

coincides with numerator in (17). On the other hand, when looking at the denominator of the

Sharpe ratio, the variance of the differenced series V ar(∆k̃y
∗
t̃
), is given by the expression in (10),

and this expression does not grow linearly with k̃h. Hence the Sharpe ratio for the aggregated series

is not constant, and instead may be written as:

ζ∗ ≡
S∗
hk̃√
hk̃

=
hk̃µ√

V ar(∆k̃y
∗
t̃
)
√
hk̃

=
µ

σε

hk̃√
hk̃

√
h(k̃ − 1) + 1 + (2h−1)(h−1)

3h

=
µ

σε

 hk̃√
hk̃

√
hk̃ − h+ 1 + (2h−1)(h−1)

3h

 (18)

Given the expression above, we note three things.
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Proposition 1 Under the maintained assumption that at the highest frequence, the data generating
process is random walk with iid errors, and ∀h, k ≥ 1, we propose that:
(a) For a given level of aggregation, h, dζ

∗

dk̃
< 0

(b) For a given level of k̃, dζ
∗

dh > 0

(c) When considering joint increases in h and k̃, dζ∗

d(hk̃)
> 0.

First, consider the implications of proposition 1(a). It would indicate that for a given level of

aggregation, h, and in the absence of appropriate corrections as suggested by Lo (2002), the Sharpe

ratio divided by the square root of the horizon, ζ∗, decreases with k̃. This would have the effect of

making short-run investments appear to be ‘safer’than long run investments and this feature has

already been noted empirically by some (see for example Cochrane, 2001, p.412).16

Second, with regards to proposition 1(b). Given the earlier results from the variance and covariance

expressions, we know that the modified Sharpe ratio, ζ∗ (h) is an increasing function of h. Thus

conditioning on k̃, we should see the modified Sharpe ratio increase as we aggregate data for a given

holding period, k̃. This can be seen in the second term in expression (18), which is an increasing

function of h, and hence larger than 1 for h > 1. This means that expression (18) is larger than

(17) making the investment ‘more profitable’per unit of risk when using temporally aggregated

data as compared to observations from the true frequency of the DGP.

Finally, proposition 1(c) considers the case when h and k̃ jointly increase. In looking at these

comparisons, it is possible to show that dζ∗

d(hk̃)
> 0. Hence aggregated data, even at comparable

holding period horizons, should yield a higher value for ζ∗.

In order to verify and validate these results, we compute the modified Sharpe ratio for different

levels of temporal aggregation as a simple empirical illustration. We use the price at close of the

S&P 500 to construct daily net returns between 1970 - 2013. We then compute ζ∗ at 1, 3, 5, and

10 year horizons for daily, monthly, quarterly and annually time averaged data. The results are

reported in figure 3 and table 3.

16Note that hk̃√
hk̃

√
hk̃−h+1+ (2h−1)(h−1)

3h

> 1 because hk̃ − h+ 1 + (2h−1)(h−1)
3h

< hk̃.
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Figure 3 depicts the results for daily data. As can be seen in the figure 3, when we increase the

holding period horizon k̃, the value of the modified Sharpe ratio on the whole declines. We can

also see the decline in ζ∗ for h > 1, i.e. the monthly, quarterly and annual data in panel B of table

3. For example when using the annual time averaged data, the value of the modified Sharpe ratio

declines from 0.355 down to 0.278, and this is consistent with proposition 1(a). Thus for a given

frequency of the data, one might reasonably conclude that short term holding periods were ‘safer’

than long term holding periods.

When we instead condition on a particular holding period horizon, we find that the value of the

modified Sharpe ratio increases with the degree of temporal aggregation. For example at a holding

period horizon of 1 year, the value increases from 0.025 to 0.355, and this is consistent with

proposition 1(b). However, one should note that in going across the rows of panel B, we are really

comparing different levels of aggregations at comparable holding period horizons, i.e. hk̃ = τ , where

τ is a constant (for example one year). This will be the case whenever we examine the modified

Sharpe ratio for τ holding periods for daily versus monthly or quarterly aggregated data. Here,

for the same comparable holding period, e.g. one year (τ = 1), when we use daily data (h = 1)

and evaluate a one year holding period, then k̃ = 240. When we look at the equivalent number for

the monthly data (h = 20) ,there k̃ = 12. So the numbers in the rows of panel B really depict the

situation where ∂h > 0 and ∂k < 0. However, given the effect above for proposition 1(a), since the

numbers are increasing across the rows, the only way that may happen is if dζ
∗

dh > 0.

Finally, when we may examine how the modified Sharpe ratio changes based on the joint increase

in h and k by (loosely) looking at the main diagonal in the results in panel B. There we see that

ζ∗ increases from 0.025 (h = 1, 1 year holding period) to 0.278 (h = 240, 10 year holding period),

which verifies proposition 1(c). In addition, the result here would seem to indicate that in terms of

overall effects, the temporal aggregation effect dominates the holding period effect, i.e. dζ∗

dh > dζ∗

dk̃
.
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6 Conclusions

This paper has sought to understand the implications of temporally aggregating data when the

underlying data generating process contains a random walk. As such, the findings in this paper

are relevant for a large number of literatures where some fundamental process driving a series may

contain a random walk. We have examined the implications here within the context of the literature

on exchange rates and asset prices. We do this under two scenarios, one where the data is time

averaged, and the other where the data is interval sampled.

Our key findings are as follows. We are able to characterize the difference between the aggregated

and disaggregated series in terms of the autocorrelation and autocovariance functions analytically

under both time averaging and interval sampling. As such, we can attribute the difference that

arises between the two series to two components: a distortion that arises out of time averaging

the data, as well as a small sample bias, resulting from the loss of information due to temporal

aggregation, and this occurs under both time averaging and interval sampling. We derive a general

analytical expression for the variance and covariance, of any order, for both the level and differences

of an aggregated series, and this allows us to generalize the findings of Working (1960). The results

here could, in principle, be used to filter the aggregated series and retrieve the original properties

of the underlying series if we knew the true frequency of the data generating process.

In addition, we obtain a generalized expression for the Variance Ratio at any lag value, and note

that the Variance Ratio is a function of the degree of aggregation as well as the autocorrelation

lag, and that it differs from one. In doing so, we are able to link the degree of aggregation directly

to value of the Variance Ratio, and in doing so, bound the set of values that the Variance Ratio

can take for a process that follows a random walk.

Finally, we also examine the implications of temporal aggregation for the Sharpe ratio. We demon-

strate that the use of temporally aggregated data, that has been time averaged, will increase the
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value of the Sharpe ratio relative to the use of Sharpe ratios computed using higher frequency data,

given that the higher frequency process follows a random walk. This would suggest that returns

have a higher value for the Sharpe ratio when using annual data, as compared to the same number

computed using higher frequency data. We also derive implications for how the holding period may

impact the Sharpe ratio within this framework, and find that it tends to decrease the Sharpe ratio.

Overall, the results we present here are relevant for anyone working with time series data, par-

ticularly given that researchers often do not know anything about the true frequency of the data

generating process. We leave the process of determining a method to characterize the true frequency

of a process to future work.

23



References

Ahmad, Y. and W. Craighead, 2011. Temporal Aggregation and Purchasing Power Parity Persis-

tence. Journal of International Money and Finance, 30, 817-830.

Amemiya, .T. and Wu, R., 1972. The Effect of Aggregation on Prediction in the Autoregressive

Model. Journal of the American Statistical Association, 67 (339), 628 - 632.

Belaire-Franch, J., Opong, K.K., 2005. Some evidence of random walk behavior of Euro exchange

rates using ranks and signs. Journal of Banking and Finance 29, 1631-1643.

Brewer, K. 1973. Some Consequences of Temporal Aggregation and Systematic Sampling for

ARMA and ARMAX Models. Journal of Econometrics, 1, 133 - 154.

Campbell, J. Y. and N. G. Mankiw, 1987. Are Output Fluctuations Transitory? Quarterly Journal

of Economics, 102 (4), 857 - 880.

Campbell, J. Y. and N. G. Mankiw, 1989. International Evidence on the Persistence of Economic

Fluctuations. Journal of Monetary Economics, 23, 319 - 333.

Campos, J., Ericcson, N., and Hendry, D., 1990. An Analogue Model of Phase-Averaging Proce-

dures. Journal of Econometrics, 43, 275 - 292.

Cecchetti, S.G. and P. Lam, 1994. Variance-ration Tests: Small-sample Properties with an Appli-

cation to International Output Data. Journal of Business and Economic Statistics, 12, 177-186.

Choi, C., N. Mark and D. Sul, 2006. Unbiased Estimation of the Half-Life to PPP Convergence in

Panel Data. Journal of Money Credit and Banking, 38, 921-938.

Chow, K.V., K.C. Denning, 1993. A simple multiple variance ratio test. Journal of Econometrics

58, 385—401.

Christiano, L. J., M. Eichenbaum and D. Marshall, 1991. The Permanent Income Hypothesis

Revisited. Econometrica, 59, 397-423.

Cochrane, J. 1988. How big is the random walk in GNP?. Journal of Political Economy, 96,

24



893-920.

Cochrane, J. 2001. Asset Pricing. Princeton University Press: Princeton.

Deaton, A., 1987. Life-cycle Models of Consumption: Is the Evidence Consistent with the Theory?,

in Advances in Econometrics - Fifth World Congress, Vol. II, ed T F Bewley, Cambridge, U.K.,

Cambridge University Press, 121 - 148.

Fama, E.F., 1970. Effi cient capital markets: A review of theory and empirical work. Journal of

Finance, 25, 383-417.

Fong, W.M., Koh, S.K., Ouliaris, S., 1997. Joint variance-ratio tests of the martingale hypothesis

for exchange rates. Journal of Business & Economic Statistics 15 (1), 51—59.

Grilli, V. and Kaminsky, G., 1991. Nominal exchange rate regimes and the real exchange rate.

Journal of Monetary Economics, 27, 191 - 212.

Haug, A., 1991. The Random Walk Hypothesis of Consumption and Time Aggregation. Journal

of Macroeconomics, 13 (4), 691-700.

Huizinga, John, 1987, An empirical investigation of the long-run behavior of real exchange rates,

Carnegie-Rochester Conference Series on Public Policy 27, 149-214.

Lettau, M., and Ludvigson, S., 2010. Measuring and Modeling Variation in the Risk-Return Trade-

off. Handbook of Financial Econometrics, vol. 1, 617– 690, ed. by Yacine Ait-Shalia and Lars-Peter

Hansen. Elsevier.

Liu, C.Y., and He, J., 1991. A variance ratio test of random walks in foreign exchange rates.

Journal of Finance 46, 773—785.

Lo, A.W., 2002. The Statistics of Sharpe ratios, Financial Analysts Journal 58 (4), 36-52

Lo, A.W., MacKinlay, A.C., 1988. Stock market prices do not follow random walks: Evidence from

a simple specification test. The Review of Financial Studies 1 (1), 41—66.

Lo, A.W., MacKinlay, A.C., 1989. The size and power variance ratio test in finite samples: A

25



Monte Carlo investigation. Journal of Econometrics 40, 203—238.

Nelson, C. and Plosser, C., 1982. Trends and random walks in macroeconomic time series: Some

evidence and implications. Journal of Monetary Economics, 10 (2), 139 - 162.

Paya, I., A. Duarte and K. Holden, 2007. On the Relationship between Inflation Persistence and

Temporal Aggregation. Journal of Money Credit and Banking, 39, 1521-1531.

Paya, I., and D. Peel, 2006. Temporal Aggregation of an ESTAR process: some implications for

purchasing power parity adjustment. Journal of Applied Econometrics, 21 (5), 655 - 668.

Rossana, R. J. and J. J. Seater, 1992. Aggregation, Unit Roots, and the Time-Series Structure of

Manufacturing Real Wages. International Economic Review, 33, 159-179.

Rossana, R. J. and J. J. Seater, 1995. Temporal Aggregation and Economic Time Series. Journal

of Business and Economic Statistics, 13, 441-451.

Sargan, J. D., 1974. Some Discrete Approximations to Continuous Time Stochastic Models. Journal

of the Royal Statistical Society, Series B (Methodological), 36 (1), 74 - 90.

Siegel, J. J., 1998. Stocks for the Long Run: The Definitive Guide to Financial Market Returns

and Long-term Investment Strategies, Seconded. NewYork, NY: McGraw Hill.

Silvestrini, A. and D. Veredas, 2008. Temporal Aggregation of Univariate and Multivariate Time

Series Models: A Survey. Journal of Economic Surveys, 22 (3), 458 - 497.

Taylor, A., 2001. Potential Pitfalls for the Purchasing Power Parity Puzzle? Sampling and Speci-

fication Biases in Mean Reversion Tests of the Law of One Price. Econometrica, 69, 473-498.

Telser, L. 1967. Discrete Samples and Moving Sums in Stationary Stochastic Processes. Journal of

the American Statistical Association, 62, 484 - 499.

Tiao, G. C., 1972. Asymptotic behavior of temporal aggregates of time series. Biometrika, 59, 525

- 531.

Working, H., 1960. Note on the Correlation of First Differences of Averages in a Random Chain.

26



Econometrica, 28, 916-918.

Yilmaz, K., 2003. Martingale property of exchange rates and central bank interventions. Journal

of Business & Economic Statistics 21 (3), 383-395.

Zellner, A., 1966. On the analysis of first order autoregressive models with incomplete data.

International Economic Review, 7, 72 - 76.

27



Table 1. V R tests for the dollar/sterling spot exchange rate

Sample: August 7, 1974 to May 13, 2011.

Time Average Interval Sampling

Daily Weekly Monthly Weekly Monthly

Panel A. Variance Ratio

Chow and Denning 3.42∗ 6.59∗ 5.47∗ 1.77 1.96

Lo and MacKinlay

Lag k = 2 1.05∗ 1.23∗ 1.36∗ 1.01 1.10

Lag k = 4 1.07∗ 1.36∗ 1.62∗ 1.03 1.21

Lag k = 8 1.08∗ 1.53∗ 1.79∗ 1.13 1.27

Lag k = 16 1.09∗ 1.71∗ 1.86∗ 1.24 1.29

Panel B. Autocorrelation Coeffcient of currency returns

Lag q = 1 0.047 0.227 0.355 0.009 0.094

Lag q = 2 0.002 −0.003 0.034 −0.009 0.039

Lag q = 3 −0.013 0.046 0.067 0.051 0.037

Lag q = 4 0.007 0.041 0.042 0.038 −0.001

Lag q = 8 −0.003 −0.000 −0.001 −0.032 0.010

Notes: Numbers in table are variance ratios. An asterisk denotes rejection of the null

of the heteroskedasticity robust Chow and Denning (1993) and

Lo and MacKinlay (1988) statistics at the 5% level for lags 2, 4, 8, 16
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Table 2. Dollar/sterling spot August 7, 1974 to May 13, 2011.

Autocorrelation Coeffi cient of order q for the k−differenced series

Time Average Interval Sampling

k, q RW Daily Weekly Monthly Weekly Monthly

k = 2 q = 1 0.500 0.523 0.591 0.644 0.499 0.560

k = 2 q = 2 0 0.018 0.109 0.181 0.021 0.095

k = 2 q = 4 0 0.003 0.057 0.045 0.058 0.021

k = 4 q = 1 0.750 0.767 0.824 0.850 0.766 0.790

k = 4 q = 2 0.500 0.510 0.575 0.595 0.539 0.552

k = 4 q = 4 0 0.014 0.124 0.088 0.094 0.030

Notes: Numbers in table are correlation coeffi cients of order q for the k−differenced

series. The second column reports the values that would correspond to a

Random Walk model of the series in levels.The third column are the values for the daily

exchange rate and subsequent columns for the time average or interval sampled

of the daily figures.
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Table 3: Impact on Adjusted Sharpe Ratios from temporal aggregation

Panel A: Descriptive Stats

Mean Variance

Actual (Daily) Data 0.00025978 0.00011323

Panel B: Modified Sharpe Ratio for Time Averaged Data

Temporal Aggregation (h)

(h = 1) (h = 20) (h = 60) (h = 240)

Holding Period Horizon (years) Daily Monthly Quarterly Annual

1 0.0248 0.1110 0.1992 0.3547

3 0.0220 0.0911 0.1670 0.3441

5 0.0232 0.0801 0.1474 0.3132

10 0.0205 0.0741 0.1376 0.2779

Notes: Daily returns were constructed from the closing price of the S&P 500 based on daily price data

between 1970 - 2013. Temporal aggregation was based on values of h = {1, 20, 60, 240} . The

numbers in Panels B equal the modified Sharpe ratio: ζ∗ ≡ S∗k√
k
.
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Figure 1: Plot of the V R for different values of h and k̃.
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Figure 2: Correlation coeffi cient in the case of k̃ = q̃
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Figure 3: Value of the modified Sharpe ratio, ζ∗ for different values of k̃ for daily net returns

data.
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Consider a series yt that follows a random walk, where increments are uncorrelated:

yt = yt−1 + εt = y0 +

t∑
s=1

εs

where εt is white noise: E (εt) = 0;V ar (εt) = E
(
ε2t
)

= σ2ε; E (εtεs) = 0 ∀t 6= s and without any loss of

generality we assume the initial condition to be zero, y0 = 0. Then the process that yt follows has the

following properties:

First order moments: E (yt) = E
[
y0 +

∑t
s=1 εs

]
= E (y0) = y0;

Second order moments:

V ar (yt) = E
[
y2t
]
− E [yt]

2 = E

[
t∑

s=1

ε2s

]
=

t∑
s=1

E
(
ε21
)

= tσ2ε

Cov (yt, yt−k) = E

[(
y0 +

t∑
s=1

εs

)(
y0 +

t−k∑
s=1

εs

)]
− y20 = (t− k)σ2ε

Cor(yt, yt−k) =
(t− k)σ2ε

(tσ2ε)
0.5 ((t− k)σ2ε)

0.5 =
t− k

t0.5 (t− k)0.5
=

√
t− k
t

Third order moments: Here we assume that the white noise process is a Gaussian white noise process,

which means that E
(
ε3t
)

= 0, E
(
εat ε

b
s

)
= 0.

E
[
(yt − E (yt))

3
]

= E

( t∑
s=1

εs

)3
= E

 ∑
s1+s2+...+st=n

(
n

s1, s2, ..., st

) ∏
1≤j≤t

ε
sj
j

 by the multinomial theorem

= E

( t∑
i=1

ε3i

)
+ 3

 t∑
i=1

∏
j

ε2i εj

+ 6
∏
u,v,w

εuεvεw



This gives us the following measure of Skewness:

γ ≡
E
[
(yt − E (yt))

3
]

(
E
[
(yt − E (yt))

2
]) 3

2

=
E
[(∑t

s=1 εs
)3]

(tσ2ε)
3
2

Fourth order moments:

2



Kurtosis:

β ≡
E
[
(yt − E (yt))

4
]

(
E
[
(yt − E (yt))

2
])2 =

E
[(∑t

s=1 εs
)4]

(tσ2ε)
2

Time Averaging Case

Let t̃ represent observations from the aggregated data, where t̃ = t
h , and k̃ represent lags of the aggregated

series, i.e. k̃ = k
h . Then the aggregated series can be represented in terms of the original observations as

y∗
t̃

= 1
h

∑h−1
i=0 yht̃−i. Similarly, the k̃

′th lag is y∗
t̃−k̃ = 1

h

∑h−1
i=0 yht̃−hk̃−i = 1

h

∑h−1
i=0 yh(t̃−k̃)−i.

This aggregated series will have the following properties: E
(
y∗
t̃

)
= 1

hE
[∑h−1

i=0

(
y0 +

∑ht̃−i
s=1 εs

)]
= y0;

Variance:

V ar
(
y∗
t̃

)
= V ar

(
1

h

h−1∑
i=0

yht̃−i

)
=

1

h2
V ar

h−1∑
i=0

ht̃−i∑
s=1

εs


=

1

h2
V ar

h t−(h−1)∑
j=1

εj +
h−1∑
i=1

iεt+1−i


= σ2ε

[
(t− (h− 1)) +

(h− 1) (2h− 1)

6h

]
= σ2ε

[(
ht̃− (h− 1)

)
+

(h− 1) (2h− 1)

6h

]

Covariance:

Cov
(
y∗
t̃
, y∗
t̃−k̃

)
= Cov

[(
1

h

h−1∑
i=0

yht̃−i

)(
1

h

h−1∑
i=0

yh(t̃−k̃)−i

)]
= Cov

1

h

h−1∑
i=0

ht̃−i∑
s=1

εs,
1

h

h−1∑
i=0

h(t̃−k̃)−i∑
s=1

εs


= σ2ε

[
t− k − (h− 1) +

(h− 1) (2h− 1)

6h

]
= σ2ε

[
h
(
t̃− k̃

)
− (h− 1) +

(h− 1) (2h− 1)

6h

]

Correlation:

3



Cor
(
y∗
t̃
, y∗
t̃−k̃

)
=

Cov
(
y∗
t̃
, y∗
t̃−k̃

)
(
V ar

(
y∗
t̃

))0.5 (
V ar

(
y∗
t̃−k̃

))0.5
=

σ2ε

[
h
(
t̃− k̃

)
− (h− 1) + (h−1)(2h−1)

6h

]
√
σ2ε

[(
ht̃− (h− 1)

)
+ (h−1)(2h−1)

6h

]
.

√
σ2ε

[(
h
(
t̃− k

)
− (h− 1)

)
+ (h−1)(2h−1)

6h

]

=⇒ ρ∗
k̃

=

√√√√h
(
t̃− k̃

)
+D

ht̃+D

where D(h) = (h−1)(2h−1)
6h − (h− 1) = − (h−1)6h [1 + 4h] < 0 since h ≥ 1.

Interval Sampling Case

The aggregated series can be represented in terms of the original observations as y∗
t̃

= yht̃. Similarly, the k̃
′th

lag of y∗
t̃
is y∗

t̃−k̃ = yht̃−hk̃ = yh(t̃−k̃).This aggregated series will have the following properties: E
(
y∗
t̃

)
= y0+∑t̃

s=1E (εhs) = y0; V ar
(
y∗
t̃

)
= V ar

(∑t̃h
s=1 εs

)
= t̃hσ2ε; Cov

(
y∗
t̃
, y∗
t̃−k̃

)
= Cov

[∑t̃h
s=1 εs,

∑(t̃h−k̃h)
s=1 εs

]
=(

t̃− k̃
)
hσ2ε; Cor

(
y∗
t̃
, y∗
t̃−k̃

)
= ρ∗

k̃
=

h(t̃−k̃)σ2ε√
ht̃σ2ε

√
h(t̃−k̃)σ2ε

=

√
(t̃−k̃)
t̃

Variance Ratio Test

The true DGP we are considering exhibits uncorrelated increments ∆yt = εt, where ∆ is the first difference

operator, and V ar(∆yt) = σ2ε. The k−difference of yt, ∆kyt =

k−1∑
i=0

εt−i, and therefore V ar(∆kyt) = kσ2ε.

The time average aggregated series can be represented in terms of the original observations (assuming

without loss of generality that initial condition y0 = 0):

y∗
t̃

=
1

h

h−1∑
i=0

yht̃−i =
1

h

h−1∑
i=0

ht̃−i∑
s=1

εs

Similarly, the k̃′th lag of y∗
t̃
is:

y∗
t̃−k̃ =

1

h

h−1∑
i=0

yht̃−hk̃−i =
1

h

h−1∑
i=0

h(t̃−k̃)−i∑
s=1

εs
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The k̃−difference of this process is equal to

∆k̃y
∗
t̃

= y∗
t̃
− y∗

t̃−k̃ =
1

h

h−1∑
i=0

ht̃−i∑
s=h(t̃−k̃)+1−i

εs

=
1

h

h t−(h−1)∑
j=t−k+1

εj +
h−1∑
i=1

iεt−i+1 +
h−1∑
i=1

iεt−k−i+1



and its variance is

V ar(∆k̃y
∗
t̃
) =

1

h2

h2 t−(h−1)∑
j=t−k+1

σ2ε + σ2ε

h−1∑
i=1

i2 + σ2ε

h−1∑
i=1

i2


=

1

h2

h2 t−(h−1)∑
j=t−k+1

σ2ε + 2σ2ε

h−1∑
i=1

i2


=

(
(k − h+ 1) +

(2h− 1)(h− 1)

3h

)
σ2ε

=

(
h(k̃ − 1) + 1 +

(2h− 1)(h− 1)

3h

)
σ2ε

=
(
hk̃ + 2D + (h− 1)

)
σ2ε

And we obtain the expression for the Variance Ratio

V R(k̃) =
V ar(∆k̃y

∗
t̃
)

k̃V ar(∆y∗
t̃
)

=
h(k̃ − 1) + 1 + (2h−1)(h−1)

3h

k̃
(

1 + (2h−1)(h−1)
3h

) =
hk̃ + 2D + (h− 1)

k̃ (2D + (2h− 1))

Autocorrelations of Differenced Series:

We introduce the parameter q̃ which is the order of the autocovariance for the k̃−differenced aggregated se-
ries. Remember that∆y∗

t̃
= 1

h

∑h−1
i=0

∑t−i
s=t−(h−1)−i εs, and, similarly,∆y

∗
t̃−q̃ = 1

h

∑h−1
i=0

∑h(t̃−q̃)−i
s=h(t̃−q̃)−h+1−i εs =

1
h

∑h−1
i=0

∑t−hq̃−i
s=t−hq̃−(h−1)−i εs.Given that∆y∗

t̃
,∆y∗

t̃−q̃ are only sums of white noise processes then Cov(∆y∗
t̃
,∆y∗

t̃−q̃) =

E
[
∆y∗

t̃
∆y∗

t̃−q̃

]
.

For the product to have terms in comon the following needs to hold: 2(h− 1) ≥ hq̃, or, h(2− q̃) ≥ 2. This

only holds for the case of q̃ = 1 given that h ≥ 1.So the Cov(∆y∗
t̃
,∆y∗

t̃−q̃) only has solution different than

zero for q̃ = 1. This result coincides with Working (1960).
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Cov(∆y∗
t̃
,∆y∗

t̃−q̃) =
1

h2

[
h−1∑
i=1

i(h− i)σ2ε

]
=

1

h2

[
h(h− 1)(h− 2)

6
σ2ε

]
=

(h− 1)(h+ 1)

6h
σ2ε =

(h2 − 1)

6h
σ2ε

Let us now compute Cov(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃). Note first that we can write

∆
k̃
y∗
t̃

=
1

h

h−1∑
i=0

ht̃−i∑
s=h(t̃−k̃)+1−i

εs =
1

h

h−1∑
i=0

ht̃−i∑
s=ht̃−hk̃+1−i

εs

=
1

h

h−1∑
i=0

t−i∑
s=t−k+1−i

εs

and similarly

∆
k̃
y∗
t̃−q̃ =

1

h

h−1∑
i=0

h(t̃−q̃)−i∑
s=h(t̃−q̃−k̃)+1−i

εs =
1

h

h−1∑
i=0

ht̃−hq̃−i∑
s=h(t̃−q̃)−hk̃+1−i

εs

=
1

h

h−1∑
i=0

t−i−hq̃∑
s=t−k+1−i−hq̃

εs

The covariance is derived from the product of ∆
k̃
y∗
t̃
and ∆

k̃
y∗
t̃−q̃. The condition to have terms in common

is −k + 1− (h− 1) ≤ −hq̃, or h(1 + k̃ − q̃) ≥ 2. This condition holds when k̃ ≥ q̃ given that h > 1.

The covariance now has two expressions depending on the value of k̃ and q̃ (remember that k̃ ≥ q̃ has to

hold):

Cov(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =

1

h2

[
h−1∑
i=1

i(h− i)σ2ε

]
=

(h2 − 1)

6h
σ2ε if q̃ = k̃

So for any value of k̃, and q̃ the distortion calculated in Working holds as long as q̃ = k̃.

The second expression
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Cov(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =

1

h2

[[
h(k̃ − q̃ − 1) + 1

]
h2 + 2

h−1∑
i=1

ih

]
σ2ε

=
1

h2

[[
h(k̃ − q̃ − 1) + 1

]
h2 + h2(h− 1)

]
σ2ε

=
[
h(k̃ − q̃ − 1) + 1 + (h− 1)

]
σ2ε = h(k̃ − q̃)σ2ε if k̃ > q̃

Correlation. For the case of k̃ = 1 (and therefore q̃ = 1)

Cor(∆y∗
t̃
,∆y∗

t̃−q̃) =
h2−1
6h

2h2+1
3h

=
h2−1
6h

1 + (2h−1)(h−1)
3h

=
h2 − 1

2(2h2 + 1)
=

h2 − 1

4h2 + 2

For the case of k̃ > 1 we have two cases

Cor(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =

h2−1
6h

h(k̃ − 1) + 1 + (2h−1)(h−1)
3h

if q̃ = k̃

For the case when k̃ > q̃

Cor(∆
k̃
y∗
t̃
,∆

k̃
y∗
t̃−q̃) =

h(k̃ − q̃)
h(k̃ − 1) + 1 + (2h−1)(h−1)

3h

=
h(k̃ − q̃)

hk̃ − (h− 1) + (2h−1)(h−1)
3h

if k̃ > q̃
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