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1 Introduction

An important area of research in recent theoretical and empirical time series analysis has focused

on potential nonlinear features of macroeconomic relationships using threshold autoregressive (TAR)

speci�cations. Much of the impetus for this interest stems from a large number of studies that have

found evidence of asymmetric behavior in such relationships that have led to forecasts that depend

on the state of certain economic conditions (Potter, 1995; Galbraith, 1996; Pesaran and Potter, 1997;

Koop and Potter, 2004; Juvenal and Taylor, 2008; Gonzalo and Pitarakis, 2013).1 While many of these

studies have found extensive support for nonlinearity in many macroeconomic time series, the evidence

is, however, not overwhelming (see for example, Enders, Falk, and Siklos (2007)).

In this environment, it is important to recognize that this evidence for nonlinearity could result

from distortions introduced by the presence of outlier observations. For example, most macroeconomic

aggregates are subject to substantial variation, given changes in economic conditions, �nancial or po-

litical crises and other isolated disturbances. These turbulent histories may appear as outliers in those

time series and, in the presence of some atypical observations, statistical tests may incorrectly reject

linear speci�cations for the data-generating process (DGP). At the same time, the sample size of most

macroeconomic aggregates is relatively short because they are usually sampled quarterly or annually.

It has been argued by van Dijk, Franses, and Lucas (1999), Ahmad (2008) and López Villavicencio

(2008) that the nonlinear properties of the relevant series may only be re�ected in a few observations.

A researcher may view these nonlinear data points as atypical observations and remove them, thus

destroying intrinsic nonlinearity (van Dijk et al., 1999; López Villavicencio, 2008).2

In this paper, we investigate the e�ects of outliers on regular testing procedures for TAR processes

(Hansen, 1996, 1997) by means of Monte Carlo simulations. Our objective is three-fold. First, we

evaluate the performance of linearity tests for autoregressive (AR) and TAR processes when outliers

are absent. Second, we introduce outliers into the DGP and examine how the presence of these outlier

observations in�uences the results for di�erent sample sizes, degrees of contamination and magnitudes

of the outlier observations. Finally, we analyze the link between outliers and the degree of persistence

in AR and TAR processes, focusing speci�cally on how they a�ect the size and power of the tests.

Addressing these issues has important implications for the time series literature. Incorrectly assum-

ing linearity in macroeconomic relationships could lead to misleading inferences, policy implications and

out-of-sample forecasts. Therefore, if the presence of outliers distorts the identi�cation of linear vis-à-vis

1For a comprehensive review of TAR applications in Economics, see Hansen (2011) and Tong (2011).
2Moreover, Ahmad (2008) argues that even if the underlying data generating process is nonlinear, the presence of

nonlinearity in a small number of observations leads to small sample bias when estimating parameters.
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nonlinear properties of time series, then researchers should exert caution when making inferences about

them. Meanwhile, a number of macroeconomic time series exhibit a high degree of persistence. Given

that such persistence has important economic implications, understanding how linearity tests perform

in the presence of outliers for persistent processes becomes relevant.3 Moreover, if the nonlinear behav-

ior of the series is only re�ected in a small number of observations, then persistent processes may make

the identi�cation and estimation of the process easier since the probability that the process remains in

the alternative regime is higher.

Our paper is similar in spirit to Koop and Potter (2001), who propose a Bayesian model comparison

approach to determine whether departures from linearity in macroeconomic aggregates are endogenously

generated, as in a TAR process, or whether they merely re�ect structural instabilities that linear �xed

parameter models cannot account for. They use their approach to investigate the presence of nonlin-

earities in several arti�cial and real data series and �nd little support for threshold-type nonlinearities

alone. It is also related to the work of van Dijk et al. (1999), who study whether apparent evidence

of nonlinearity in smooth transition autoregressive (STAR) processes is due to the presence of outlier

observations in economic time series. They propose tests for smooth transition nonlinearity that are

robust to the presence of outliers and conduct Monte Carlo experiments to evalute the performance

of such tests. Their results show that the proposed tests have a better level and power behavior than

standard nonrobust tests in series contaminated with outliers.

By contrast, our study di�ers from the existing literature in that, to the best of our knowledge, it

is the only one that speci�cally explores the e�ects of outliers on TAR processes. More importantly,

we also investigate the extent to which the degree of persistence a�ects the size and power of Hansen's

bootstrap linearity test. Our results show that the size of the test is a�ected by the presence of outliers

only in the case of persistent processes. The size distortion increases monotonically with the degree

of persistence and the sample size. Meanwhile, the presence of outliers marginally reduces the power

of the test, particularly in the kinds of sample sizes common for macroeconomic analysis. Notably,

we �nd that the power of the test increases with both the degree of persistence, and the magnitude

of the outlier, even in small samples and for small threshold e�ects. This implies a puzzling result:

larger outlier observations in persistent TAR processes could actually help to improve the performance

of statistical tests.

The rest of the document is organized in the following way. In the next section, we discuss how to

3For example, the persistence of in�ation is a major determinant of the economic costs of disin�ation. Similarly,
a change in the persistence of cyclical employment in recent recessions could explain the so-called `jobless recoveries'
phenomenon.
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de�ne outlier observations and provide a motivation for how the degree of persistence could a�ect the

linear and TAR processes. Section 3 describes the Monte Carlo experiments and presents the results.

We provide some concluding remarks in section 4.

2 Outliers in Economic Time Series

Several empirical studies have found evidence of nonlinearities in di�erent macroeconomic series or

relationships using TAR models and their di�erent extensions. For example, di�erent authors suggest

threshold-type nonlinearities in business cycle dynamics (Beaudry and Koop, 1993; Potter, 1995; Pesaran

and Potter, 1997), unemployment (Koop and Potter, 2004), interest rates (Tsay, 1998; Hansen and Seo,

2002; Gospodinov, 2005), �nancial conditions (Galbraith, 1996; Balke, 2000; Atanasova, 2003), the

e�ects of monetary policy on output (Sander and Kleimeier, 2004; Donayre, 2014), the e�ects of �scal

policy on output (Auerbach and Gorodnichenko, 2012, 2013; Fazzari, Morley, and Panovska, 2013),

and exchange rates (Taylor, 2001; Bec, Ben-Salem, and Carrasco, 2004; Sarno, Taylor, and Chowdhury,

2004; Juvenal and Taylor, 2008).

Whilst the presence of structural nonlinearities are supported by many economic theories, the ma-

jority of studies neglect the possibility that such variables could be contaminated by occasional outliers,

as a consequence of a change in regimes, political or economic disturbances. One exception is given by

Ahmad and Glosser (2011), who �nd evidence that nonlinear behavior is re�ected in a small number

of outlier observations in the context of the real exchange rates that they examine. They �nd that

outlier observations can distort linear relationships and cause the linearity test to reject the correct null

hypothesis of linearity too often. That is, apparent nonlinearity found in the empirical literature could

be the consequence of outliers observations in linear processes. Since linear and nonlinear models have

di�erent implications for the characterization and forecasting of real macroeconomic variables, as well

as for policymaking, it is important to examine whether certain features of the series are caused by

genuine nonlinearity or by some outlier observations.

Outliers are de�ned in relation to a speci�c model. That is, some observations can be considered

as outliers in one model and, at the same time, they can be regular observations in a di�erent model

(van Dijk et al., 1999). Typically, two types of outliers have been especially important in time series

analysis. The additive outlier (AO) generates a one time e�ect on the level of the time series and, thus,

only the current observation is a�ected. The innovative outlier (IO), in turn, implies that a shock at

time t also in�uences future observations through the same dynamics as the linear part of the process.
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The approach we adopt to de�ne outliers in this paper builds on the replacement model of Martin

and Yohai (1986):

yt = xt(1− δt) + ζtδt (1)

for t = 1, . . ., T , where T denotes the sample size and δt is a binary random variable such that

δt =

 1 with probability π

0 otherwise

The observed time series yt consists of a core process, xt, and a contaminating process, ζt. In the

case of a linear process, we assume that xt follows an autoregression (AR) of order p; that is, φ(L)xt =

εt, where φ(L) = 1−φ1L− . . .−φpLp is a polynomial in the lag operator L de�ned as Ljxj = xt−j for

all j, and where εt ∼ iid (0, σ2
ε ). Di�erent speci�cations of the ζt process can generate a wide variety

of outlier patterns.

While it has been shown that the presence of both AO and IO can distort the results of testing

and estimation, additive outliers have a much more signi�cant e�ect on ordinary least squares (OLS)

estimates (van Dijk et al., 1999; van Dijk, Teräsvirta, and Franses, 2002). Since the estimation and

testing of TAR processes relies on an iterative procedure of OLS estimates for di�erent values of the

threshold parameter, we focus on outliers of the additive type in this paper. An additive outlier is

obtained if ζt = xt + ζ for some constant ζ, such that (1) reduces to

yt = xt + ζδt (2)

A vast literature exists that highlights di�erent approaches to detecting outliers, and procedures for

correcting for the presence of outliers. For the purposes of this paper, equations (1) and (2) are all we

need to understand the e�ect of outlier observations on TAR processes. For a review of the literature

on outliers, we refer the reader to van Dijk et al. (1999) and Lucas, Franses, and van Dijk (2002).

To gain some insight regarding the possible e�ects of outlier observations on AR processes, and

how they might depend on the degree of persistence, we simulate both linear AR and TAR processes

to gain some insight into how outliers may in�uence the cloud of observations. Figure 1 displays two

AR(1) processes. The left panel of �gure 1 exhibits an AR(1) process with a low degree of persistence

(φ = 0.4) while the right panel of �gure 1 exhibits an AR(1) process with a high degree of persistence

(φ = 0.9). In both cases, the DGP is the same, except for the autoregressive coe�cient, and outliers
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have been introduced according to equation (2) for ζ = σ, 2σ, 3σ, where σ is the standard deviation of

the given process. For visual purposes, outlier observations are depicted in orange triangles for ζ = σ,

black rhombi for ζ = 2σ and green circles for ζ = 3σ.

Figure 1: Outliers in AR processes

(a) Low persistence (b) High persistence

Arti�cial AR processes generated according to yt = 1.2 +φyt−1 +et, where et ∼ N(0, 1) for values of φ = 0.4 and φ = 0.9.
Outliers are depicted in orange triangles for ζ = σ, black rhombi for ζ = 2σ and green circles for ζ = 3σ according to
equation (2).

As it can be observed from �gure 1, the cloud of points is more scattered in the less persistent AR

process. As a consequence, the outlier observations seem to blend it with those from the core process

xt. In this sense, they are less evident than in the case of the more persistent AR process, even for large

outlier observations (e.g., green circles associated with ζ = 3σ). In contrast, outlier observations are

more likely to be further away from the cloud of points given a higher degree of persistence (see right

panel of �gure 1). Therefore, they are more likely to distort the results of linearity tests. As the right

panel suggests, the distortion seems to increase with the size of the outlier observations, which is to be

expected.

Figure 2, on the other hand, displays two TAR(1) processes generated using the same DGP, except

that they di�er in their degree of persistence. Outliers have been introduced according to equation (2)

for ζ = σ, 2σ, 3σ and they are shown in the same colors and patterns as �gure 1. The left panel of

�gure 2 exhibits a TAR process with a low degree of persistence while the right panel of �gure 2 exhibits

a TAR(1) process with a high degree of persistence.

From just observing the �gures above, we note that the outlier observations in the less persistent

TAR process seem to blend in within the cloud of points, even in the case of large outliers associated
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Figure 2: Outliers in TAR processes

(a) Low persistence (b) High persistence

Arti�cial TAR processes generated according to yt = (0.7− 0.5yt−1)I[yt−1 ≤ 0] + (−1.8 + φyt−1)I[yt−1 > 0] + et, where
et ∼ N(0, 1) for values of φ = 0.4 and φ = 0.9. Outliers are depicted in orange triangles for ζ = σ, black rhombi for
ζ = 2σ and green circles for ζ = 3σ according to equation (2).

with ζ = 3σ (in green circles). Meanwhile, those in the more persistent TAR process, in the right

panel of �gure 2, lie further away from the cloud of points, making it easier to visually identify the two

regimes. Whilst the evidence here is anecdotal, the data in �gure 2 would suggest that larger outlier

observations may allow the identi�cation of a change in regimes, thus helping to increase the power of

linearity tests.

3 Monte Carlo Analysis

In this section, we evaluate the e�ects of additive outliers on linearity tests against TAR processes for

di�erent speci�cations of several, arti�cial time series. Section 3.1 describes the Monte Carlo experiment

and discusses the linear and threshold autoregressive processes considered, as well as the bootstrap test

for linearity against TAR processes (Hansen, 1996). In section 3.2, we investigate the performance of

the test in a setting in which the data generating process (DGP) is linear. In the third subsection, we

evaluate the relative performance of the test when the DGP follows a TAR process.

We consider the cases where the AR and TAR processes exhibit di�erent degrees of contamination

with outlier observations, as well as the case where they are not contaminated. Furthermore, we also

examine the behavior of the linearity test for di�erent degrees of persistence for both linear and TAR

processes. In all case we examine, we set the sample size to T = 40, 80, 160, 320, 640. Outliers occur
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with probability π, and we set their magnitude equal to ζ = 0, 1, 2, 3 standard deviations. We consider

symmetric contamination in the sense that outliers are equally likely to be positive or negative. Hence,

δt takes the values 1, 0, −1 with probabilities π/2, 1 − π and π/2, respectively. Finally, we consider

1,000 simulations for each case we examine. Although we examine di�erent values of π, we present the

results in the paper for the case of π = 0.05.4

3.1 Core processes and linearity test

In the �rst set Monte Carlo experiments, we consider a linear DGP as in equation (2), for which the

core process xt is generated from a pth-order autoregression according to:

xt = α +

p∑
j=1

φjxt−j + εt (3)

where εt ∼ NID (0, σ2
ε ), σε = 1, α is the intercept term and all roots of φ(L) lie outside the unit

circle. To address the power of the linearity test, the AR(p) process for xt is replaced by a TAR(p) one

according to:

xt =

α1 +

p∑
j=1

φj,1xt−j

 I(st ≤ γ) +

α2 +

p∑
j=1

φj,2xt−j

 I(st > γ) + εt (4)

where I(.) denotes the indicator function; α1 and α2 correspond to the intercepts in regimes 1 and

2, respectively; the roots of φ1(L) and φ2(L) lie outside the unit circle; st is the threshold variable; γ

is the unknown threshold parameter; and εt ∼ NID (0, σ2
ε ), σε = 1. In this way, when st ≤ γ, the

dynamics of the series is captured by the 1× (p+ 1) vector of coe�cients, (α1 φ1
′)′, and when st > γ,

it is captured by the alternative 1× (p+ 1) vector of coe�cients, (α2 φ2
′)′. For further details on TAR

processes, refer to Hansen (1996, 1997).

In all cases, the starting value x0 is set equal to 0. To eliminate possible dependencies of the results

on this intial condition, the �rst 200 observations of each series are discarded. Furthermore, we obtain

the contaminated series yt by adding AOs according to (2). In our experiments, we consider the e�ects

of varying the persistence parameters in the AR and TAR models, as well as the sample size T , and the

magnitude of the outliers, ζ. In practice, the econometrician has to decide on the order p of the linear

4Additional results are available upon request from the authors.
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AR(p) and the TAR(p) models. To reduce the computational burden, since our choice here is purely

for expositional purposes, we focus on the simplest case and set p = 1. Hence, equation (3) reduces to:

xt = α + φ1xt−1 + εt (5)

with |φ1| < 1, while equation (4) simpli�es to:

xt = (α1 + φ1,1xt−1) I(st ≤ γ) + (α2 + φ1,2xt−1) I(st > γ) + εt (6)

with |φ1,1| < 1 and |φ1,2| < 1. When testing linearity against a TAR process, the relevant null hy-

pothesis is given by H0 : φ1,1 =φ1,2. Thus, the linearity test is based on a bootstrap procedure to

approximate the asymptotic distribution of the likelihood ratio (LR) statistic:

LR = sup
γ∈Γ
{LRn(γ)} (7)

where γ is assumed to be restricted to a bounded set5 Γ =
[
γ, γ

]
and

LRn(γ) = 2 [lnf(Y |γ̂)− lnf(Y |γ)] (8)

is the LR statistic against the alternative H1 : φ1,1 6= φ1,2 when γ is known, f(Y |γ) corresponds to the

values of the likelihood function for each γ, and γ̂ is estimate of the threshold parameter, considering

a general process such as the one given by equation (2).

Since γ is not identi�ed under the null hypothesis, the asymptotic distribution of (8) is non-

standard. Hansen (1996) shows that the asymptotic distribution may be approximated by the fol-

lowing bootstrap procedure for a TAR process like that in (6). Let u∗t be iid N(0, 1) random draws for

t = 1, . . . , T and set x∗t = u∗t . Regressing x∗t on past values of xt, we can obtain the likelihood func-

tions lnf∗(X∗|γ) and lnf∗(X∗|γ̂) to form the likelihood pro�le LR∗n(γ) = 2 [lnf(X∗|γ̂)− lnf(x∗|γ)]

and LR∗n = supγ∈ΓLR
∗
n(γ). Hansen (1996) shows that the distribution of LR∗n converges weakly in

probability to the null distribution of LRn so that repeated (bootstrap) draws from LR∗n may be used

to approximate the asymptotic null distribution of LRn. For further details, refer to Hansen (1996).

5This is standard in the literature to avoid end-of-sample distortions.
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3.2 Size properties

We generate data according to equation (5) and set α = 1.2 and allow the AR coe�cient φ to take

the following values: {−0.9,−0.5,−0.1, 0.1, 0.5, 0.9}. Table 1 shows the rejection frequencies of the null

hypothesis of linearity when the DGP is linear for di�erent values of ζ, T and φ. That is, it shows the

frequency with which the linearity test falsely rejects the null hypothesis when it is true, considering 5

percent critical values for the linearity test.

The results reported in table 1 demonstrate that size of the test is close to the nominal level of

5 percent across di�erent sample sizes and levels of persistence in the absence of outliers (i.e., for

ζ = 0). However, the rejection frequency for the contaminated series yt increases with the degree of

contamination, ζ, for a given sample size, T . For example, for T = 80 and φ = 0.5, the percentage of

false rejections is 4.0, 8.3 and 14.4 for ζ = 1, 2, 3, respectively. The pattern is similar for all values of φ.

In general, the size of the test increases with the sample size T , with the exception of processes with

very low persistence (φ = −0.1, 0.1). In all other cases, when the processes are relatively persistent, or

very persistent, the rejection frequencies increase to very high levels for high values of ζ and/or high

values of T . This is consistent with the results found in van Dijk et al. (1999).

The reason behind the higher rejection frequencies associated with higher sample sizes is that, in

larger samples, the fraction of outlier observations in the contaminated series, yt, is also larger. With

more outlier observations, linearity tests are more likely to reject the null hypothesis. These rejection

frequencies are substantially higher in the case of more persistent series. Intuitively, when processes are

less persistent, the distribution of the observations generated is wider and, therefore, outlier observations

tend to blend in within a more scattered cloud of points, as shown in the left panel of �gure 1. In

contrast, for more persistent processes, the distribution of observations generated from the core process

xt is much tighter. Hence, outliers are further away from the cloud of points, distorting inference.

The distortion of the size of the test for large T and high φ becomes more evident from a graphical

perspective. The results from table 1 are summarized in �gure 3. Each panel, which corresponds to

di�erent magnitudes of the outlier observations, ζ, shows rejection frequencies for varying values of T

and φ. In the upper left panel, where ζ = 0, the size of the test is close to the nominal level of 5 percent

in most cases.

In the presence of outliers, the size is clearly distorted. For example, in the upper right panel, where

ζ = 1, rejection frequencies remain close to the 5 percent nominal level for values of φ close to zero,

even for large samples. However, as the persistence of the AR process (φ) departs from zero, the size

increases forming a U-shaped surface. The same pattern arises for the cases of ζ = 2 and ζ = 3. Note
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that the size is substantially higher for the bottom panels, reaching rejection frequencies as high 80

percent for ζ = 2 and as high as 100 percent for ζ = 3.

Figure 3: Size of Hansen (1996)'s bootstrap test in the presence of outlier observations

Rejection frequencies of the null hypothesis of linearity, using Hansen (1996)'s bootstrap linearity test, based on 1,000
Monte Carlo simulations. The DGP is generated according to equation (5) with α = 1.2 and di�erent values of the
magnitude of the outliers, ζ, sample size, T , and level of persistence φ. Outliers occur with probability π = 0.05.

3.3 Power properties

Table 2 shows rejection frequencies of the null hypothesis of linearity when the core process xt is

described by a threshold autoregression of order one, TAR(1). Speci�cally, the model in (4) reduces to:

xt =

 α1 + φ1xt−1 + εt, if xt−d ≤ γ

α2 + φ2xt−1 + εt, if xt−d > γ
(9)

where d = 1, and we set γ = 0, α1 = 0, φ1 = 0.6, φ2 = 0 and allow α2 to vary from 0.1 to 0.6 (to

assess sensitivity with respect to the threshold e�ect). This DGP corresponds to one used in Hansen

(1997). The contaminated series yt are obtained by adding AO's to (9) according to equation (2). It

is important to notice that this DGP is not very persistent in regime 1 (when xt−1 ≤ γ) and has zero

persistence in regime 2.
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From the results reported in table 2, it can be seen that the power of the test increases with the

sample size, T , as expected. For small sample sizes, the power of the test is very low, re�ecting the little

information available to identify both regimes accurately. However, for large sample sizes, the power of

the test increases dramatically, approaching 100 percent even in the presence of large outliers. We also

note that, for a given sample size T , the power of the test also increases with the threshold e�ect (i.e.

as α2 increases, the rejection frequency also increases for given T and ζ), regardless of the existence or

size of outliers.

The results here show that the presence (or absence) of outliers seems to only have a small e�ect on

the rejection frequencies. For example, when ζ = 0, the power of the test is not very di�erent from the

cases where ζ = 1, 2, 3, for any given T or α2. Additionally, it is worth noting that the power of the test

generally increases with ζ, for ζ 6= 0. That is, in the presence of outliers, the power of the test improves

with the magnitude of the outlier approaching levels that are sometimes close to, or even higher than,

the power of the test in the absence of outliers. For example, for T = 80 and α2 = 0.1, the power of

the test is 17.9 percent in the absence of outliers. Once relatively small outliers contaminate the series

(ζ = 1), the power drops to 15.7 percent. As ζ increases to 2 and 3, the power of the test improves to

15.8 and 20.7, respectively.

Intuitively, we can think of these results as follows. For small values of ζ, the observations essentially

add noise to the series, which decreases the power of the test. However, for larger values of ζ, it helps

to highlight observations in di�erent regimes. Consequently, the power of the test increases.

The increase in the power of the test with the sample size T and the threshold e�ect, α2, is more

easily perceived visually. Figure 4 summarizes the results from table 2. As in the previous �gure, each

panel corresponds to di�erent magnitudes of the outlier observations, ζ, and shows rejection frequencies

for T and α2 for the TAR process described in (9), with AO's introduced according to equation (2). In

the upper left panel, which corresponds to the case of the DGP without outliers (ζ = 0), the hyperplane

of rejection frequencies is concave and each contour, on the threshold e�ect axis, increases with α2.

That is, the power of the test increases with T and α2. In the presence of outliers, the hyperplanes

of rejection frequencies exhibit a similar behavior, regardless of the value of ζ. The power of the test

increases with the sample size and the rise in power occurs faster in the presence of a larger the threshold

e�ect (α2).

To the extent that the degree of persistence drastically distorts the size of the test, as shown in the

previous subsection, we next evaluate how the power of the test is a�ected by the presence of outliers

when the degree of persistence changes for a given TAR process. The DGP, in this case, is given by
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Figure 4: Power of Hansen (1996)'s bootstrap test in the presence of outlier observations

Rejection frequencies of the null hypothesis of linearity, using Hansen (1996)'s bootstrap linearity test, based on 1,000
Monte Carlo simulations. The DGP is generated according the threshold process described in equation (9) with d = 1,
γ = α1 = 0, φ1 = 0.6 and di�erent values of the magnitude of the outliers, ζ, sample size, T , and threshold e�ect α2.
Outliers occur with probability π = 0.05.

a core process, xt, that follows the TAR(1) setting described in (9) with d = 1, γ = 0, α1 = 0, and

φ1 = {0.1, 0.5, 0.9}, α2 = {0.1, 0.3, 0.6} and φ2 = {−0.9, −0.5, −0.1, 0.1, 0.5, 0.9}.

Figure 5 displays the power of the test for di�erent sizes of outliers, ζ, samples sizes, T , and di�erence

in persistence parameters, (φ1 − φ2), when α2 = 0.3.6 The columns in �gure 5 correspond to the cases

where φ1 = 0.1, φ1 = 0.5 and φ1 = 0.9, respectively. The rows correspond to the cases where ζ = 0,

ζ = 1, ζ = 2 and ζ = 3, respectively. In general, the results from �gure 5 support the �ndings from

�gures 4 and 3. The frequency of rejections of the null hypothesis of linearity increases with φ1. That

is, a higher degree of persistence in at least one of the regimes increases the power of the test for given

ζ. Graphically, the surfaces are higher as φ1 increases from column to column, for each row.

To illustrate the results, suppose that we focus on the �rst column, where φ1 = 0.1. When φ1 = 0.1,

the dynamics of the TAR process has very little persistence in regime 1. As we vary the value of φ2 and

as the di�erence (φ1−φ2) departs from zero, the dynamics in the second regime become more persistent

6The results for the cases of α2 = 0.1 and α2 = 0.6 are not very di�erent and, therefore, not reported here. They are,
however, are available upon request
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Figure 5: Power of Hansen (1996)'s bootstrap test in the presence of outlier observations (by degree of
persistence)

Rejection frequencies of the null hypothesis of linearity, using Hansen (1996)'s bootstrap linearity test, based on 1,000
Monte Carlo simulations. The DGP is generated according the threshold process described in equation (9) with d = 1,
γ = α1 = 0, and di�erent values of the magnitude of the outliers, ζ, sample size, T , threshold e�ect, α2, and di�erence
in persistence parameters (φ1 − φ2). Outliers occur with probability π = 0.05. The �rst, second and third columns
correspond to the cases where φ1 = 0.1, φ1 = 0.5 and φ1 = 0.9, respectively.

and the power of the test increases. This increase in power is enhanced with the presence of outliers,

especially in the case of large outliers (ζ = 3). For example, when the TAR process is not contaminated

with outlier observations (ζ = 0), the frequency of rejections of the null of linearity remains small for

(φ1 − φ2) close to zero, even as the sample size T increases, since the threshold e�ect is, in that case,

small. As (φ1 − φ2) departs from zero, in either direction, the power of the test increases, especially as

T increases, since the larger number of observations make the identi�cation of the two regimes easier.

Note that the increase in power is not symmetric, however, in the sense that the power is much higher

14



as (φ1 − φ2) approaches 1 (which implies that φ2 = −0.9) than for (φ1 − φ2) approaching -0.8 (which

implies that φ2 = 0.9). In the former case, the threshold e�ect is much larger than the latter case.

With the introduction of outlier observations, the power of the test increases more symmetrically as

(φ1−φ2) departs from zero. The frequency of rejections as (φ1−φ2) approaches -0.8 increases with the

magnitude of the outliers and, for ζ = 3, it gets closer to 100 percent, similar to the case when (φ1−φ2)

approaches 1.

The results are similar for the case where we �x the persistence of regime 1 to φ1 = 0.5 and we

vary the persistence of regime 2. As the di�erence in persistence (φ1 − φ2) approaches the maximum

di�erence between the two regimes of 1.4, the degree of persistence in the second regime and the

associated threshold e�ect increase. Consequently, we �nd that the power of the test increases to 100

percent, even for relatively small samples since the test is better able to distinguish the two regimes.

Meanwhile, when the persistence of the second regime is high (φ2 = 0.9), but the di�erence in persistence

between the regimes is small (and negative), we �nd that the associated threshold e�ect is smaller. In

the absence of outliers, the frequency of rejections is smaller in this case, even as the sample size increase.

However, as outliers contaminate the process, the power of the test increases as (φ1 − φ2) approaches

-0.4 and, when ζ = 3, it gets closer to 100 percent, similar to the case where (φ1 − φ2) approaches 1.4.

The �nal case is for the scenario where the persistence is high in the �rst regime (φ1 = 0.9), and

we vary the persistence of the second regime, φ2. As (φ1 − φ2) approaches the maximum di�erence of

1.8, both regimes are very persistent and the associated threshold e�ect increases. Therefore, the power

of the test quickly raises close to 100 percent, even for small samples. By contrast, when (φ1 − φ2)

decreases near 0, the associated threshold e�ect becomes smaller and, in the absence of outliers, the

power of the test remains very low. However, once the series is contaminated with them, the frequency

of rejections increases with ζ. Notably, for ζ = 3, the power of the test increases closer to 100 percent,

even for small samples, and even when (φ1 − φ2)=0. In this case, while the persistence parameters are

identical in both regimes, the intercepts still switch regimes and the presence of outliers seems to help

the linearity test better identify the regime-switching.7

Overall, the �ndings here are contrary to what conventional wisdom might indicate. They support

the premise that large outliers may help the identi�cation of threshold-type nonlinearity, particularly

in the case of persistent dynamics in regimes.

7We also repeat the exercise in a scenario where there are regime speci�c outliers. We do not present the results here
since the conclusions are similar to those found above.
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4 Concluding Remarks

We have studied the e�ects of outlier observations on a bootstrap test of linearity against threshold

autoregressions when the DGP is described by an AR or a TAR process for di�erent sample sizes,

persistence parameters and magnitude of outliers. The Monte Carlo evidence suggests that the empirical

performance of Hansen (1996)'s bootstrap linearity test does not su�er from large size distortions or

much loss of power in the case of series that are not contaminated. However, their performance can

be distorted by the presence of outlier observations. Speci�cally, the size of the test is more distorted

in more persistent AR processes, especially in large sample environments. At the same time, we �nd

that the power of the test increases with the sample size, the magnitude of the threshold e�ect, the

magnitude of the outlier observation and the persistence of the process.

Interestingly, and contrary to our priors, we also �nd that the magnitude of the outlier observations

can help the bootstrap test to better identify the change in regimes, especially in the case of more per-

sistent series. This result is puzzling as we would expect that series that are more highly contaminated

would distort the ability of test statistics to correctly identify nonlinear processes as such. Intuitively,

this could be explained by the fact that the distribution of observations in more persistent processes is

narrower and, consequently, the cloud of points in a scatter plot is tighter. When outliers are relatively

large in such settings, then, those observations will lie further away from the cloud of points, making

the identi�cation of regimes easier for tests statistics.

It should be mentioned, however, that our results do not suggest that all nonlinearity is caused by

outliers. Rather, the results in this study are meant to guide researchers in being careful when making

inferences about the presence or absence of nonlinear properties in time series. More importantly, our

results seem to suggest that the persistence of time series, and their volatility (associated with large

outlier observations), could provide insightful information to develop an outlier-robust version of the

bootstrap test. This is left for future research.
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