Factoring Summary

Before factoring any polynomial, write the polynomial in **descending order** of one of the variables.

- 1. Factor out the Greatest Common Factor (GCF). Look for this in <u>every</u> problem. This includes factoring out a -1 if it precedes the leading term. *Example:* $-3x^2 + 12x - 18 = -3(x^2 - 4x + 6)$
- 2. If there are **FOUR TERMS**, try to factor by grouping (GR). Example: $x^3 + 6x^2 - 2x - 12$

$\underline{x^3 + 6x^2} \underline{-2x - 12} =$	group the first two terms, last two terms
$x^2(x+6) - 2(x+6) =$	factor out GCF from each grouping
$(x+6)(x^2-2)$	factor out the common grouping

			3. If there are <u>TWO TERMS</u> , look for these patterns:
x	x^2	x^{3}	a. The difference of squares (DOS) factors into conjugate binomials:
			$a^2 - b^2 = (a - b)(a + b)$
1	1	1	<i>Example:</i> $9x^4 - 64y^2 = (3x^2 - 8y)(3x^2 + 8y)$
2	4	8	Note: a variable is a perfect square if the exponent is even
3	9	27	
4	16	64	
5	25	125	b. The sum of squares does not factor:
6	36	216	$a^2 + b^2$ is prime
7	49	343	<i>Example:</i> $9x^4 + 64y^2$ is PRIME
8	64	512	
9	81		
10	100		c. The sum of cubes (SOC) or difference of cubes (DOC) factors by these patterns:
11	121		each type contains a binomial (small bubble) times a trinomial (large bubble).
12	144		Only the sign patterns differ between sum of cubes and difference of cubes.
13	169		
14	196		
15	225		
			$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$
			<i>Example</i> : $(8x^3 + 27) = (2x + 3)(4x^2 - 6x + 9)$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

Example : $(64x^{6} - 125y^{3}) = (4x^{2} - 5y)(16x^{4} + 20x^{2}y + 25y^{2})$
Note: a variable is a perfect cube if the exponent is a multiple of three

- 4. If there are **<u>THREE TERMS</u>**, look for these patterns:
 - a. Quadratic trinomials of the form $ax^2 + bx + c$ where a = 1 ($QT \ a = 1$) factor into the product of two binomials (double bubble) where the factors of c must add to b. *Example:* $x^2 - 4x - 12 = (x - 6)(x + 2)$
 - b. Quadratic trinomials of the form $ax^2 + bx + c$ where $a \neq 1$ (*QT* $a \neq 1$) eventually factor into the product of two binomials (double bubble), but you must first find the factors of *ac* that add to *b*, rewrite the original replacing *b* with these factors of *ac*, then factor by grouping to finally get to the double bubble.

Example: $9x^{2} + 15x + 4$ ac = (9)(4) = 36 factors of 36 that add to 15: 12 and 3 $9x^{2} + 12x + 3x + 4 =$ 3x(3x + 4) + 1(3x + 4) =(3x + 4)(3x + 1)

c. Quadratic square trinomials (*QST*) of the form $ax^2 + bx + c$ may factor into the square of a binomial. Look for the pattern where two of the terms are perfect squares, and the remaining term is twice the product of the square root of the squares:

 $a^{2} \pm 2ab \pm b^{2} = (a \pm b)^{2}$ Example: $16x^{2} - 40x + 25 = (4x - 5)^{2}$

5. Factor all expressions completely. Sometimes, you will need to use two or three types of factoring in a single problem.

Example:

$-2x^4 + 32 =$	factor out the GCF of -2
$-2(x^4-16) =$	factor the difference of squares
$-2(x^2-4)(x^2+4) =$	factor the remaining difference of squares
$-2(x-2)(x+2)(x^2+4)$	(remember that the sum of squares is prime)