Logarithms

Definition of the Logarithmic Function

 $\log_a x = y \iff a^y = x$ where "a" is a positive number and $a \neq 1$ In words, $\log_a x$ is the exponent to which the base "a" must be raised to give "x".

Example: $\log_2 8 = 3 \iff 2^3 = 8$ Logarithmic form Exponential form The word "log" asks: What power do I put on 2 to get 8? Answer: 3

<u>**Common Logarithm:**</u> The logarithm with base 10 is called the *common logarithm* and is denoted by omitting the base: $\log x = \log_{10} x$

<u>Natural Logarithm</u>: The logarithm with base *e* is called the *natural logarithm* and is denoted by **In**: $\ln x = \log_e x$ $\ln x = y \iff e^y = x$

Properties of Logarithms	

1.	$\log_a 1 = 0$	$\log_5 1 = 0$
2.	$\log_a a = 1$	$\log_{5} 5 = 1$
3.	$\log_a a^x = x$	$\log_5 5^8 = 8$
4.	$a^{\log_a x} = x$	$5^{\log_5 12} = 12$

Laws of Logarithms

Examples

Example

Examples

Let "a" be a positive number, with $a \neq 1$. Let A>0, B>0, and C be any real numbers.

1. $\log_{a}(AB) = \log_{a} A + \log_{a} B$ 2. $\log_{a}\left(\frac{A}{B}\right) = \log_{a} A - \log_{a} B$ 3. $\log_{a}(A^{c}) = C \cdot \log_{a} A$ (bring the power down to) $\log_{a}(AB) = \log_{a} A + \log_{a} B$ $\log_{5} 12 = \log_{5}(3 \cdot 4) = \log_{5} 3 + \log_{5} 4$ $\log_{2} 5 = \log_{2}\left(\frac{15}{3}\right) = \log_{2} 15 - \log_{2} 3$ $\log_{4} 6^{3} = 3 \cdot \log_{4} 6$

Change of Base Formula

This formula allows you to find the calculator value of the log of any base.

coefficient position)

$$\log_{b} x = \frac{\log_{a} x}{\log_{a} b}$$

$$\log_{9} 20 = \frac{\ln 20}{\ln 9} = \frac{\log 20}{\log 9}$$
change to: base e base 10